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• High-entropy materials demonstrate high tensile strength, high 
resistance to fracture, corrosion, and oxidation, and high 
temperature stability. 

• Applications in hypersonic flight, nuclear reactors, and jet 
engines.1,2

• Synthesis of metal carbide and high-entropy carbides with low-
temperature microwave (MW) plasma.

• Utilization of optical emission spectroscopy (OES) to determine 
the degree of single-phase synthesis achieved.

• Rapid processing time, decreased sintering temperatures, and 
improved physical and mechanical properties from MW plasma 
sintering.3

Figure 14. Face-centered cubic 
(FCC) lattice structure of a high-
entropy carbide (HEC). 

• High-entropy 
carbides possess 
a face-centered 
cubic crystal 
structure 
composed of a 
uniquely random 
assortment of 
five transition 
metals.
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Materials and Methods
X-Ray Diffraction
• A thin film scan of each pellet was performed to determine the 

elemental composition and crystal structure.
• Goal is the formation of a single-phase metal carbide and high-

entropy carbide after annealing.
Scanning Electron Microscope
• Scans of each pellet were performed using a scanning electron 

microscope with energy dispersive x-ray spectroscopy 
(SEM/EDX).

• Presented additional information regarding the elemental 
composition and physical structure of the pellets.

• Analysis performed to determine the progress of the reduction 
from metal oxide + graphite to metal carbide.

Powder Processing & Microwave Plasma Sintering
• Five transition metal oxide (Hf, Nb, Ta, Ti, and Zr) powders were 

separately (and collectively) mixed with graphite powder and 
milled with a high energy ball mill. 

• Resulting powder was pressed into pellets under ~1.2 ton using a 
hydraulic pellet press. 

• Pellets were annealed using low-temperature MW plasma in a 
chemical vapor deposition (CVD) machine with a fiber optic 
cable for OES.

Figure 2. Schematic representation of pellet formation using high energy ball 
milling followed by consolidation of the powder into a pellet using a hydraulic 
press and finally annealing using a CVD machine.

Results and Discussion (Cont.)
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Figure 4. SEM/EDX data regarding the elemental composition percentage of the precursor metal oxide + graphite pellets for niobium oxide (top left), 
titanium oxide (top middle), and the HfNbTaTiZr oxide + graphite pellet (top right) as well as the elemental composition percentage of the pellets after 
annealing for niobium oxide (bottom left), titanium oxide (bottom middle), and the HfNbTaTiZr oxide + graphite pellet (bottom right).
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Figure 5. SEM images of niobium oxide + graphite, titanium oxide + graphite, 
and the HfNbTaTiZr oxide + graphite pellets before annealing (left) and after 
(right).
• Significant conversion of Nb2O5 + graphite into NbC.
• No significant conversion of TiO2 + graphite into TiC indicative of 

no single-phase synthesis.
• No significant conversion of HfNbTaTiZr oxide + graphite into 

TiC indicative of no single-phase synthesis.

TiO2 + Graphite

• No significant contrast between oxygen intensity at lower and 
higher temperatures with OES data indicates it is an imperfect 
measurement of molecular reduction. 

• Lack of OES peaks indicates that metals are not appearing in the 
plasma composition, possibly due to annealing into metal 
carbides with stronger atomic and molecular bonds. Additional 
SEM/EDX scans on Zr, Ta, and Hf precursors are needed to 
determine if metal carbide synthesis is occurring.

Figure 3. OES spectra peaks for (from left to right going down) the molybdenum control screw, HfNbTaTiZr oxide + graphite pellet, and the Hf, Nb, Ta, Zr, 
and Ti metal oxide + graphite pellets for the temperatures range of 1500° C – 1650° C and wavelength ranges of 200 nm – 700 nm and 700 nm – 1050 nm. 
TiO2 + graphite pellet OES spectra for a temperature of 1950° C is also shown for both wavelength ranges. 

• Ubiquitous peaks present in each pellet at 394 nm, 397 nm, 423 nm, 785 nm, and 792 nm have been linked to tungsten impurities. An 
844 nm peak has been linked to atomic oxygen. 

• Expected metal peaks were not clearly observed except for titanium. 
• The molybdenum control screw presented with no impurity peaks and only with Hg, Hb, and Ha, peaks at 434 nm, 486 nm, and 656 

nm, respectively, and with an atomic oxygen peak at 971 nm. All these peaks were present in each pellet. 
• SEM/EDX scans showed a significant decrease in the oxygen concentration relative to the metal only for the metal oxide + graphite 

pellets, and the presence of tungsten impurities on all the pellets.
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